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SELFDECOMPOSABILITY PERPETUITY LAWS 
AND STOPPING TIMES 

Abstract. The decomposability property of Levy class L of 
probability distributions, on a Banach space, is extended to a family of 
stopping times associated with background driving U v y  processes 
(BDLP). As consequences, this allows us to show that all dfdecom- 
posable measures are perpetuity laws and to get a representation of 
gamma distribution as an idmite product of independent uniform 
distributions. 

In the probability theory, limit distributions (or probability measures) are 
often characterized by some convolution equations (factorization properties) ra- 
ther than by Fourier transforms (the characteristic functionals). In fact, the latter 
usually follows the first one. Equations, in question, involve the multiplication by 
positive scalars c or an action of the corresponding dilation T, on measures. In 
such a setting, it seems that there is no way for stopping times (or, in general, for 
the stochastic analysis) to come into the "picture7~. However, if one accepts the 
view that the primary objective, in the classical limit distributions theory, is to 
describe the limiting distributions (or random variables) by the tools of random 
integrals/functionals, then one can use the stopping times. In this paper we 
illustrate such a possibility in the case of selfdecomposability random variables 
(i.e. the Lkvy class L) with values in a real separable Banach space. Also some 
applications of our approach to perpetuity laws are presented; cf. [2]-Ed]. In 
fact, we show that all selfdecomposable distributions are perpetuity laws. More- 
over, as a by-product we obtain a representation of gamma distributions in 
terms of products of independent uniform distributions. 

1; Let E be a real separable Banach space. An E-valued random variable 
(r.v,) X, defined on a complete probability space (62, 9, P), is said to be self- 
decomposable (or a Livy class L) if for each t > 0 there exists an r.v. X, indepen- 
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dent of X such that 

(1) x ~ , + e - ' X ,  

where A means equality in distribution. 

Re mark 1. (i) The class of selfdecomposable r.v.3 (distributions) coin- 
cides with the class of limiting r.v.'s of the following infitlltesimal triangular 
arrays : 

U,(Z~+ZZ+ ... +Z,)+b, ,  

where-u, > 0, b,€E, and Z , ,  Z,, . .. are independent E-valued r.v.'s; cf. for 
instance [8], Chapter 3. 

(ii) In case of i.i.d. 2,'s one gets in the above scheme the class of all stable 
distributions. 

(iii) In terms of probability distributions, equation (1) reads that for each 
0 < c < l there exists a probability measure p, such that 

where * denotes the convolution of measures and ( T p )  ( a )  = p (c-' .). In other 
words, T,p is the image of a measure p under the linear mapping T,: E + E 
given by T,x = cx, X E E .  

Let us also recall that a stochastic base is ah increasing and right con- 
tinuous family of a-fields & c F  (i.e. c % for s < t  and % = n,,, &). 

Furthermore, any mapping T: Q + [0, oo) such that 

is called a stopping time. 
A family Y (t), t  2 0, of E-valued random variables is called a Ldvy process 

provided 
@ Y(0) = O  9-as., Y(t+s)-Y(s) 2 Ytt)  for all s, t 2 0 ;  
@ Y Itk) - Y (tk - k = 1 , 2? . . . , n, are independent for all 0 < to < . . . 

< tn, n 2 1; 
@ t~ Y (t ,  w) are cadlag functions for 9-a,a. w ~ S 2 .  
Of course, for any c > 0 and a Uvy process E: one has Y, (t) : = Y (t + c) - 

Y (t), t  2 0, is a new Uvy process with Y ,  Y in the Skorohod space DE LO, a) 
of a11 cadlag functions. Moreover, Y, is independent of the a-field 
a {Y (t): 0 < t  6 c) = 9;. In fact, for any stopping time z with respect to 9: it 
follows that 

(4) r , ( t ) :=Y( t+z)-Y(z) ,  t 2 0 ,  

is a Lkvy process such that Y, Y and Y, is independent of the a-field Fr 
defined by 

(5 )  = (AEF:  An[z 6 t ] ~ %  for each t 2 0); 
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cf. for instance, [I], Theorem 32.5, to derive the above statements for any Lkvy 
process. 

Here is the main result which extends (1) for some stopping times. 

THEOREM 1. Suppose X is a seEfdecomposab1e E-valued r.u. Then there exists 
a stochastic base (9t),80 such that for each %-stopping time z there are indepen- 
dent E-valued r.u.'s X, and X' satisfying 

(i) x 1 ~ , + e - ' 1 ' ;  
(ii) X' is independent of X and X' X; 

(iii) the vector (X,, e-') is independent of X'. 

Proof .  From [5] or [8], p. 124, we conclude that the r.v. X is selfdecom- 
posable (is. (1) holds) if and only if there exists a unique, in distribution, U v y  
process Y such that E [log (1 + 1 1  Y (1)II)I < oo and 

(6) X z  j eTsdY(s). 
( 0 , ~ )  

(We refer to Y as the background driving Gvy process of X; in short, Y is 
a BDLP for X, cf. [6]). Taking % = a(Y (s): s < t) and defining 

(7) Z(t)  := j e-"dY(s) = eet Y (t)+ l Y(s-)e-"ds, 
(0.tI (OJI 

we see that Z (z (a)) is z-measurable for a stopping time z; cf. [9], pp. 18-20. 
Finally, using (4) and (7) we get 

(8) X L  1 e-"dY(s)+ 1 eP"dY(s) 
(0 ,~ l  (r,m) 

= Z(z)+e-' j e-sdY,(~) = X,+e-'X', 
(0,m) 

with X, = Z(T) independent of X' = l,o,m, e-'dY (s) a because Y, is indepen- 
dent of Fz. This completes the proof of Theorem 1. 

Remark  2. The integral in (6) is defined as a limit of Z (t), given by (7), as 
t + a. Existence of the limit (in probability, as. or in distribution) is equivalent 
to the condition E [log (I + 11 Y (l)/l)] < a ; cf. [5] or [8], p. 122. 

COROLLARY 1. Let Y be a BDLP of a seEfdecomposable r.v. X and let 
& = a (Y(s): s < t), t 2 0, be the stochastic base given by E: Then for each 
Fr-stopping time z there exists an r.v. X, independent of X such that 

(9) x ~ , + e - ' x .  
The equality in distribution in (9) can be strengthened as follows: 

COROLLARY 2. Let Y be an E-valued Ltvy process such that 

E [log (1 + I I  Y (1) 1111 < 
and let (9r)rB0 be the naturalflltration given by k: Then for any Pr-stopping time 
z one has 

(10) j e-"dY(s,o)= j e-"dY(s,o)+e-'(") J e-VY(s+z(o) ,o)  
(0.m) (o.r(w)l (O,m) 

for 9-a.a. UEQ. 
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Proof.  This is a consequence of Remark 2 and the equality in for- 
mula (8). w 

It is well known that any Lkvy process Y can be written as a sum of two 
independent Lkvy processes Y' and yd, i.e., Y = YE + yd, where Y-s purely 
continuous (Gaussian) while Yd is a purely discontinuous (cadlag) process. 
Furthermore, for a Bore1 subset A separated from zero (i.e., A c (x E E: ((x (1 >, E )  

for some E > 0) we define 

Yd(t; A) := C AYd(s) lA(AYd(s)), 
O < s ~ l  

where- the jumps d Yd (s) : = Yd (s) - Fd (S  -) are in the set A, which is a Lkvy 
process independent of the process Yd(t)- Yd(t; A). All the above allows us to 
conclude the following: 

COROLLARY 3. (i) Let Yd be a purely discontinuous U v y  process withfinite 
logarithmic m m n t  and let 

zo = inf {t > 0: Yd (t) # 0) 

be the stopping time of the $rst non-zero value. Then 

(1 1) e-"dYd(s) = e-ro Yd (to) + e - ' ~  J eWsdYd(s + T ~ )  9-a.s .  
(0,sr) ( 0 7 ~ )  

(ii) Let z, = inf(t > 0: Yd(t; A) # 0) be the stopping time of the$rst jump 
whose value is in A. Then 

Proof.  Apply the above stopping times in equation (10). 

Remark  3. (a) Random integrals appearing in (12) are i.i.d. and selfde- 
composable, and so are integrals in (11) and the outmost integrals in (10). 

(b) If T, = TA and z,, k 2 1, are the consecutive random times of the jumps 
of the process Yd(t; A) with zkT+ oo a.e., then one gets the factorization 

where the jumps A Y  (7,; A) are independent of z, - 7,- , for k 2 1. 

2. In this section we consider only real valued random variables. Let 
(A, B), (A,, B,), (A,, B,), . . . be a sequence of i.i.d. random vectors in R2 which 
define the stochastic difference equation 

Equation (14) appears in modelling many real situations including economics, 
finanse or insurance; cf. for instance [3], [4] and the references therein. One 
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may look at (14) as an iteration of the affine random mapping x I+ Ax + B. So, 
starting with Z0 and (Ao, B,) = (A ,  B), we get 

n 

Z n + l  =A,A,-l ... AoZof C &Ak+iAk+2 -.. An. 
k = O  

Putting Zo = 0 and assuming that (2,) converges to Z, we obtain 

In insurance mathematics, distributions of Z are called perpetuities. Note that 
by (14) -perpetuities are the solutions to 

(15) Z A A Z + B ,  
i.e., Z is a distributionaE$xed-point of the random affine mapping x H Ax + B, 
x E R. 

What triplets A, B, X satisfy (15) with (A, 3) independent of X? Or are 
there independent r.v.'s A, C, Z such that 

It seems that there are not too many explicit examples of (15) or (16); cf. 121, 
p. 288. Results from the previous section can now be phrased as foIIows: 

COROLLARY 4. (i) All seFdecomposable distributions are perpetuities, i.e. they 
satisfy (15) with non-triuial 0 < A < 1 a.s. 

(ii) AEE seEfdecomposabZe distributions whose BDLP Y have a non-zero 
purely discontinuous part have convolution factors that satisfy the equation (16). 

Let y,,, denote a gamma r.v. with parameters ct > 0, 1 > 0, i.e., it has the 
probability density 

It is known (cf. [6] and [7]) that y , ~  is selfdecomposable and its BDLP is given 
by 1- Yo (ut), where 

y'11,1, y\:{, . . . are i.i.d. copies of y,,,, and N ( t )  is a standard Poisson process, i.e., 
it has stationary independent increments, N(0)  = 0 a.e. and for t > s > 0 

If 0 < zl < z, < . . . < zn < . . . are the consecutive random times (arrival times) 
d d of the jumps of N ,  then z,-z,-, = y ,,, for n 2 1 are independent and zn = y,,, 

for n 2 1. 
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PROPOSITION 1. For a gamma r.v. y , ~  one has: 

where U is ungormly distributed on LO, 11, independent of y,,,,, and the three 
middle r.v.'s are also independent. 

(ii) 

where y$:i, yi?),, . . . are i.i.d. copies of y ,,,, U 1 ,  U2, . . . are i.i.d. copies of U and 
both sequences are -also independent. 

Proof. (i) Since y,, has a BDLP Y (tj = &(at), by'Corollary 3 (i) and 
Remark 3 (a) we have 

(Equality of the two outmost terms in (i) can be also easily checked by com- 
paring the corresponding characteristic functions.) 

(ii) Repeating the middle equality in (i) and using the facts that T,T + m 
as., and Y (.) is independent of Y (- +zl + r2 + . . . + zk) - Y (zl + 2, + . . . + z~), 
we arrive at (5). %P 

3. The method of random integral representation is also applicable to 
operator-selfdecomposable distributions; cf. [8], Chapter 3, or [ 5 ] .  Recall that 
a Banach space E-valued r.v. X is Q-selfdecomposable if for each t > 0 there 
exists an r.v. Xt  independent of X such that 

Q is a bounded linear operator on E and e-tQ is the operator given by a power 
series. 

THEOREM 2. Suppose that X is a Q-decomposable E-valued r.v. and e-'Q -, 0 
as t -t GO, in the norm topology. Then there is a filtration (9JtBO such that for 
each stopping time z there exist independent E-valued r.v.'s X ,  and X' satisfying 

(i) X z X T + e W T Q X f ;  
(ii) X' is an independent copy of X ;  
(iii) the random vector (X,, e-'Q) is independent of X'. 

P r o  of. From [5] or [ti], Chapter 111, it follows that X is Q-selfdecorn- 
posable if and only if 

for a uniquely defined LCvy process Ysuch that E [log (1 + I J  Y (1)11)] < a. Con- 
sequently, (19) allows us to proceed as in the proof of Theorem 1. rn 



Se~decomposability perpetuity laws 419 

Remark  4. (a) Corollaries from Section 1 have their "operator" counter- 
parts. 

(b) For a given E-valued r.v. 3 and a random bounded linear operator 
A on a Banach space E, consider the afine random mapping x w Ax +B. The 
question of finding all distributional fix-points, i.e., all E-valued r.v.'s X such 
that 

(20) X A X +  B ,  

seems to be more difficult as the composition of operators is not commutative. 
However, random integrals of the form 

where Y is a Levy process, r (t) is a change of time, f is a process or determinis- 
tic function, might provide a tool of constructing X satisfying the equation (20) 
or its variants (like (16)). The present paper illustrates this approach in the case 
of the selfdecomposable distributions and their random integral representations. 

Added in proof. Corollary 1 is also true when the stopping time T is re- 
placed by a non-negative random variable T independent of the BDLP Y 
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